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1 Lecture 3

1.1 Overview of This Lecture

At the beginning of this lecture, we discussed the continuity in terms of neighborhoods

(see lecture note 2). Then we introduced limit of a sequence in metric space (1.2.2), for

which we reviewed limit of a sequence of real numbers (1.2.1). Of course, the concept of

limit can also be described in the language of neighborhood (1.2.3). Once a new operation

limit is defined, we want to see if this operation is consistent with the operations defined

previously (e.g., Algebraic Limit Theorem). In this spirit, we arrive at theorem 1.2.4, which

states the connection between continuous function and limit operation: continuous functions

preserve sequential convergence.

1.2 Proof of Things

Definition 1.2.1 (limit of a sequence of real numbers.). Let a1, a2, . . . be a sequence of real

numbers. A real number a is said to be the limit of the sequence a1, a2, . . . if, given ε > 0,

there is a positive integer N such that, whenever n > N , |a− an| < ε. In this event we shall

also say that the sequence a1, a2, . . . converges to a and write limn an = a.

Definition 1.2.2 (limit of a sequence in a metric space). Let (X, d) be a metric space. Let

a1, a2, . . . be a sequence of points of X. A point a ∈ X is said to be the limit of the sequence

a1, a2, . . . if limn d(a, an) = 0. Again in this event we shall say that the sequence a1, a2, . . .

converges to a and write limn an = a.

Be careful. Try to understand limn d(a, an) = 0.

Corollary 1.2.3. Let (X, d) be a metric space and a1, a2, . . . be a sequence of points of X.

Then limn d(a, an) = 0 for a point a ∈ X if and only if for each neighborhood V of a there is

an integer N such that an ∈ V whenever n > N .

proof skeleton. Immediate. From this corollary we can see that, if the limit of a sequence

exists and N is big enough, the sequence will eventually fall into a neighborhood V of the

limit a. Try to picture it on the real line.
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Theorem 1.2.4 (theorem 5.4, chapter 2). Let (X, d), (Y, d′) be metric spaces. A function

f : X → Y is continuous at a point a ∈ X if and only if, whenever limn an = a for a sequence

a1, a2, . . . of points of X, limn f(an) = f(a).

proof skeleton. This theorem says that a continuous function preserves sequential conver-

gence, i.e., a convergent sequence undergoing a function/transformation is still convergent,

or, i.e., limn an = a⇒ limn f(an) = f(a) = f(limn an).

On the one hand, suppose that f is continuous at a point a = limn an, and there is a

sequence a1, a2, . . . of points of X (why we can suppose like this when proving this direction,

what if there is no such sequences in X at all? hint : recall that how we prove ∅ ⊂ A, where

A is any set), we need to show limn f(an) = f(a). By Corollary 1.2.3, the sequence a1, a2, . . .

will eventually fall into any specified neighborhood of a, and of course, given that V is a

neighborhood of f(a), it will eventually fall into f−1(V ), since f−1(V ) is a neighborhood of

a (why? by which theorem?). Hence the sequence f(a1), f(a2), . . . will eventually fall into

V (why?), which means limn f(an) = f(a) (why? by which theorem/corollary?).

On the other hand, suppose the function f preserves sequential convergence, where the

sequence converges at a point a, you need to show f is continuous at a. It is proved in the

lecture by proving that f is not sequential-convergence-preserving if f is not continuous.

Following the lecture, you need to construct something like (1, 1
2
, . . . , 1

n
, . . . ), which is not

convergent.

Recall that a open ball is a neighborhood of each of its points (see lecture note 2, or

pictures, or textbooks), we define open set, as an abstraction of open ball, to satisfy this

important property.

Definition 1.2.5. A subset O of a metric space is said to be open if O is a neighborhood

of each of its points.

Theorem 1.2.6 (theorem 6.2, chapter 2). A subset O of a metric space (X, d) is an open

set if and only if it is a union of open balls.

proof skeleton. Try it to get familiar with open set.

Theorem 1.2.7 (theorem 6.3, chapter 2). Let f : (X, d)→ (Y, d′). Then f is continuous if

and only if for each open set O of Y , the subset f−1(O) is an open subset of X.

proof skeleton. To prove this theorem, you are invited to think about the connection between

open set and neighborhood, just like previously we invite you to think about the relationship

between open ball centered at a point a and neighborhood of the point a.
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Theorem 1.2.8 (theorem 6.4, chapter 2). Let (X, d) be a metric space. Then we have

• The empty set ∅ is open.

• X is open.

• If O1, O2, . . . , On is open, then O1 ∩ · · · ∩On is open.

• If for each α ∈ I, Oα is an open set, then ∪α∈IOα is open.

proof skeleton. Immediate.

1.3 Further Reading

2.5, 2.6 in Mendelson.
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