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1 Lecture 6

1.1 Overview of This Lecture

In previous lecture we introduced the notation of topological equivalence (1.2.1), and

showed some examples (1.2.2, 1.2.3). Notice that topological equivalence relates two metric

spaces, i.e., (X, d) and (Y, d′). It is natural to consider a special case, where X = Y . The

corresponding theorems are 1.2.4, 1.2.6 and 1.2.8. However, does the concept, topological

equivalence, even make sense? Theorem 1.2.12 gives a possible answer.

In the context of metric spaces, the various topological concepts such as continuity, neigh-

borhood, and so on, may be characterized by means of open sets. Discarding the distance

function and retaining the open sets of a metric space gives rise to a new mathematical

object, called a topological space (1.2.14).

1.2 Proof of Things

Definition 1.2.1 (definition 7.6, chapter 2). Two metric space (A, dA) and (B, dB) are said

to be topologically equivalent or homeomorphic if there are inverse functions f : A → B

and g : B → A such that f and g are continuous. In this event we say that the topological

equivalence is defined by f and g.

Example 1.2.2 (homeomorphic spaces). X = {0, 1}, Y = {0, 10}, f : X → Y , f(x) = 10x,

g : Y → X, g(y) = 0.1x.

Example 1.2.3 (non-homeomorphic spaces). (The explaination here for this example is

from Real Mathematical Analysis) Consider the interval [0, 2π) = {x ∈ R|0 ≤ x < 2π} and

define f : [0, 2π) → S1 to be the mapping f(x) = (cos x, sinx), where S1 is the unit circle

in the plane, i.e., S1 = {(x, y) ∈ R2|x2 + y2 = 1}. The mapping f is a continuous bijection,

but the inverse bijection is not continuous. For there is a sequence of points (zn) on S1 in

the fourth quadrant that converges to p = (1, 0) from below, and f−1(zn) does not converge

to f−1(p) = 0. Rather it converges to 2π. Thus, f is a continuous bijection whose inverse

bijection fails to be continuous. See figure 1.
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Figure 1: f wraps [0, 2π) bijectively onto the circle.

Lemma 1.2.4 (lemma 7.8, chapter 2). Let (X, d) and (X, d′) be two metric spaces. If there

exists a number K > 0 such that for each x, y ∈ X, d′(x, y) ≤ Kd(x, y), then the identity

mapping i : (X, d)→ (X, d′) is continuous.

proof skeleton. Given ε > 0, let δ = ε
K

.

Exercise 1.2.5 (homework exercise). Find an example of X, d1, d2 such that i is not con-

tinuous.

Corollary 1.2.6 (corollary 7.9, chapter 2). Let (X, d) and (X, d′) be two metric spaces. If

there exist positive numbers K and K ′ such that for each x, y ∈ X, we have

d′(x, y) ≤ Kd(x, y) ≤ K ′Kd′(x, y) ,

then the identity mappings define a topological equivalence between (X, d) and (X, d′).

proof skeleton. Simply apply lemma 1.2.4 twice.

Example 1.2.7. Isomorphism of categories.

Corollary 1.2.8. (Rn, ||·||2) ∼ (Rn, ||·||1) ∼ (Rn, ||·||∞), where ||x||2 =
√
x21 + · · ·+ x2n, ||x||1 =

|x1|+ · · ·+ |xn|, ||x||∞ = maxi=1,...,n xi.
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Proof. It is easy to see from the definition of the norm that

||x||∞ ≤ ||x||2 ≤
√
n||x||∞

and

||x||∞ ≤ ||x||1 ≤ n||x||∞ ,

from which

||x||2 ≤
√
n||x||∞ ≤

√
n||x||1 ≤

√
nn||x||∞ ≤

√
nn||x||2

immediately follows. We finished the proof.

Lemma 1.2.9 (lemma for theorem 1.2.12). If a function f : X → Y is injective, then for

each subset O of X, f−1(f(O)) = O.

true proof. Let O be a subset of X. Then for each x ∈ O, we have f−1(f(x)) = {x} since f

is injective. It follows that f−1(f(O)) = O.

Lemma 1.2.10 (lemma for theorem 1.2.12). Let (X, d1) and (X, d2) be two metric spaces.

Let f : X → Y and g : Y → X be inverse functions, i.e., gf = idX , fg = idY . Then for

each subset O of X, we have f(O) = g−1(O).

true proof. Given a subset O of X, we have g(f(O)) = O and hence g−1(g(f(O))) = g−1(O).

That is, f(O) = g−1(O).

Lemma 1.2.11 (lemma for theorem 1.2.12). Let f : X → Y be a function and O be a subset

of Y , then we have f−1(OC) = (f−1(O))C.

true proof. For each x ∈ X, we have

x ∈ f−1(OC) ⇐⇒ f(x) ∈ OC

⇐⇒ f(x) /∈ O
⇐⇒ x /∈ f−1(O)

⇐⇒ x ∈ (f−1(O))C ,

(1)

which implies that f−1(OC) = (f−1(O))C .

Theorem 1.2.12 (theorem 7.10, chapter 2). Let (X, d1) and (X, d2) be two metric spaces.

Let f : X → Y and g : Y → X be inverse functions, i.e., gf = idX , fg = idY . Then the

following four statements are equivalent:

1. f and g are continuous;
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2. A subset O of X is open if and only if f(O) is an open subset of Y .

3. A subset F of X is closed if and only if f(F ) is a closed subset of Y .

4. For each a ∈ X and subset N of X, N is a neighborhood of a if and only if f(N) is a

neighborhood of f(a).

true proof. We will prove this theorem in detail. The lemmas above will be extensively used.

(1 ⇒ 2) Assume that f and g are continuous. On the one hand, if f(O) is an open subset

of Y , then O = f−1(f(O)) (lemma 1.2.9) is an open subset of X (f is continuous). On

the other hand, if O is an open subset of X, then f(O) = g−1(O) (lemma 1.2.10) is

open in Y (g is continuous), which completes the proof.

(2 ⇒ 1) It is left to you as an exercise.

(2 ⇒ 3) Suppose that (2) holds. On the one hand, if f(F ) is a closed subset of Y , which

means f(F )C is open in Y , then, by lemma 1.2.10 and lemma 1.2.11,

f(FC) = g−1(FC) = (g−1(F ))C = (f(F ))C

is open in Y , which, by (2), means FC is open in X and hence F is a closed subset of

X. On the other hand, if F is closed in X, which means FC is open in X and hence

f(FC) is open in Y by (2). It follows that

(f(F ))C = (g−1(F ))C = g−1(FC) = f(FC)

is open in Y and hence f(F ) is a closed subset of Y , as desired.

(3 ⇒ 2) Immediate from above proof. It is left to you as an exercise.

(3 ⇐⇒ 4) Unnecessarily verbose! We avoid this (Why can we skip it? Why is it unrea-

sonable to prove this direction?).

(2 ⇒ 4) Suppose that (2) holds. Then for each a ∈ X and N ⊂ X, N is a neighborhood of

a if and only if N contains an open set O containing a if and only if f(N) contains an

open set O′ = f(O) containing f(a) (since a ∈ O ⊂ N ⇐⇒ f(a) ∈ f(O) ⊂ f(N)) if

and only if f(N) is a neighborhood of f(a).

(4 ⇒ 1) Suppose that (4) holds. Then f is continuous, since for each a ∈ X and each

neighborhood f(f−1(U)) = U of f(a), f−1(U) is a neighborhood of a. Similarly, g is

continuous, since for each b ∈ Y and each neighborhood V of g(b), g−1(V ) = f(V ) is

a neighborhood of b = f(g(b)).
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Remark 1.2.13 (remark for theorem 1.2.12). The proof for theorem 1.2.12 we give here is

too long! It turns out that there is a simpler and therefore more elegant one.

simpler proof. This proof is based on the following observation. When proving

(1) ⇐⇒ (2) ,

we observe that if (1) holds, then, by lemma 1.2.9, one direction of (2) is what we’ve already

proved (which direction?)! Can you transfer another direction, by again applying some

lemmas above, into something we’ve already done before? The same is true for (1) if (2)

holds. Exactly the same is again true for (1) ⇐⇒ (3) and for (1) ⇐⇒ (4).

(1 ⇐⇒ 2) Obvious.

(1 ⇐⇒ 3) Obvious.

(1 ⇐⇒ 4) Obvious.

we finished the proof.

Definition 1.2.14 (definition 2.1, chapter 3). Let X be a non-empty set and J a collection

of subsets of X such that:

1. X ∈ J .

2. ∅ ∈ J .

3. if O1, O2, . . . , On ∈ J , then O1 ∩O2 ∩ · · · ∩On ∈ J .

4. If Oi ∈ J for each i ∈ I, then ∪i∈IOi ∈ J .

The pair of objects (X,J ) is called a topological space. The set X is called the underlying

set. The collection J is called the topology on the set X, and the members of J are called

open sets.

Remark 1.2.15 (remark of definition 1.2.14). This definition of topological space is in fact

a theorem in metric space. Note that, here and in what follows, open set is nothing more

than an element of the set J . It is no longer (at least not now) a neighborhood of each of

its points, and neighborhood is what we haven’t defined yet. You have to forget the past

to better start. We will eventually from this definition develop many theorems, which are

what you’ve already been familiar with. Hence don’t panic and stay tuned. Also note that

our definition of topological space is in terms of open set. An alternative definition could be

in terms of closed set. See the next example.
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Example 1.2.16. Let X = Cn. Y ⊂ Cn is defined to be closed if there exists p1, . . . , pl ∈ B,

where B = C[x1, . . . , xn] is the ring of polynomial function on Cn, such that

Y = {z ∈ Cn|p1(z) = · · · = pl(z) = 0} =: Z(p1, . . . , pl).

To show that the closed sets of Cn defined in this way give a topology on Cn (Zariski

Topology), we need to show that

1. Cn is closed.

2. ∅ is closed.

3. The intersection of infinitely many Yi is closed.

4. The union of finitely many Yi is closed.

1.3 Further Reading

2.7, 3.1, 3.2 in Mendelson. Solve some problems in the book.
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