
SI112: Advanced Geometry Spring 2018

Lecture Note 9 — Mar. 27th, Tuesday

Prof.: Manolis Scribe: Liangzu

1 Lecture 9

1.1 Overview of This Lecture

In this lecture we introduce an important concept: compactness. After introducing its

definition (1.2.4), we devolops theorems, as usual, that relate compactness and other im-

portant topological concepts, e.g., compactness in relative topology (1.2.8), neighborhood

(1.2.10), continuity (1.2.12) and closedness (1.2.15,1.2.17).

We will spend 2 lectures on compactness (this and the next lecture).

1.2 Proof of Things

Definition 1.2.1 (covering, definition 5.2.1). Let X be a set, B a subset of X, and {Ai}i∈I
is called a covering of B or is said to cover B if B ⊂ ∪i∈IAi. If, in addition, the indexing

set I is finite, {Ai}i∈I a finite covering of B.

Definition 1.2.2 (subcovering, definition 5.2.2). Let X be a set and let {Ai}i∈I , {Bk}k∈J
be two coverings of a subset C of X. If for each i ∈ I, Ai = Bk for some k ∈ J , then the

covering {Ai}i∈I is called a subcovering of the covering {Bk}k∈J . Note that this definition is

not introduced in the lecture.

Exercise 1.2.3 (open covering, definition 5.2.3). An open covering of a set B is a union of

open set which covers B. Try to give it a rigorous definition. Or have a look at definition

5.2.3 in Mendelson.

Definition 1.2.4 (definition 5.2.4). A topological space X is said to be compact if for each

open covering {Ui}i∈I of X there is a finite subcovering Ui1 , . . . , Uin .

Remark 1.2.5 (remark for definition 1.2.4). Compactness allows to study global properties

by looking at a finite number of neighborhood. Well, the concept of compactness is somewhat

elusive and unmotivated. Have a look at this paper if you are interested in.

Remark 1.2.6 (remark for definition 1.2.4). Given the definition of compactness, how to

prove a given set, say X, is compact or not? To prove X is compact, you need to show that

for each open covering of X, there is a finite subcovering. To prove that X is not compact,
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in contrast, you need to give an counterexample, i.e., there exists a open covering of X such

that there are no subcoverings.

Definition 1.2.7 (definition 5.2.5). A subset C of a topological space X is said to be

compact, if C is a compact topological space in the relative topology.

Exercise 1.2.8 (theorem 5.2.6). Prove it: A subset C a topological space X is compact

if and only if for each open covering {Ui}i∈I , Ui open in X, there is a finite subcovering

Ui1 , Ui2 , . . . , Uin of C.

Remark 1.2.9 (remark for exercise 1.2.8). This exercise is theorem 5.2.6 in Mendelson.

We skipped it in this lecture. You can prove it by yourself. Use the definition of relative

topology and compactness.

Theorem 1.2.10 (theorem 5.2.7). A topological space X is compact if and only if, when-

ever for each x ∈ X a neighborhood Nx of x is given, there is a finite number of points

x1, x2, . . . , xn of X such that X = ∪ni=1Nxi.

Proof. On the one hand, suppose X is compact. For each x ∈ X there is a neighborhood Nx

of x (why?). Hence for each x, there is an open set Ux such that x ∈ Ux ⊂ Nx and {Ux}x∈X
is an open covering of X. Since X is compact there is a finte subcovering Ux1 , Ux2 , . . . , Uxn ,

i.e., X = ∪ni=1Uxi . But Uxi ⊂ Nxi for each i, hence X = ∪ni=1Nxi .

On the other hand, suppose whenever for each x ∈ X a neighborhood Nx of x is given,

there is a finite number of points x1, x2, . . . , xn of X such that X = ∪ni=1Nxi . We want to

show that X is compact. The below is a wrong proof.

For each x ∈ X there is an open set Ox in X containing x (why?), which is a neighborhood

Nx of x, then we have X = ∪x∈XOx = ∪x∈XNx. By our hypothesis, there are points

x1, x2, . . . , xn of X such that X = ∪ni=1Nxi = ∪ni=1Oxi . Hence X is compact.

Why is this proof wrong? The problem here is that we have to start with an arbitrary

open covering {Ui}i∈I of X, then we need to show that there is a finite subcovering. Since

{Ui}i∈I covers X, for each x ∈ X we have x ∈ Ui for some i ∈ I. Notice here that different x

can be in the same Ui, i.e., it is possible that x1, x2 ∈ X and x1 ∈ Ui, x2 ∈ Ui for some i ∈ I.

To rephrase, for each x ∈ X, there is an i = i(x) such that x ∈ Ui, which is a neighborhood

of x. Let Nx = Ui, then by our hypothesis, there are points x1, x2, . . . , xn of X such that

Nxi = Ui(xi), i = 1, 2, . . . , n covers X, and hence X is compact.

Theorem 1.2.11 (theorem 5.2.8). A topological space is compact if and only if whenever a

family ∩i∈IAi = ∅ of closed sets is such that {Ai}i∈I then there is a finite subset of indices

{i1, i2, . . . , in} such that ∩nk=1Aik = ∅.
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proof skeleton. Use the definition of compactness and “the complement of a closed set is

open”.

Theorem 1.2.12 (theorem 5.2.9). Let f : X → Y be continuous and let A be a compact

subset of X. Then f(A) is a compact subset of Y .

Proof. This theorem shows that continuous functions preserve compactness.

To show that F (A) is a compact subset of Y , let’s start with an arbitrary open covering

{Vi}i∈I of f(A), i.e., f(A) ⊂ ∪i∈IVi. Then we have A ⊂ f−1(f(A)) ⊂ ∪i∈If−1(V ), which

means that {f−1(Vi)}i∈I is a covering of A. In addition, since f is continuous and Vi is open

for each i ∈ I, {f−1(Vi)}i∈I is an open covering of A. Since A is compact, there is a finite

subcovering f−1(Vi1), f
−1(Vi2), . . . , f

−1(Vin) of A, i.e., A ⊂ ∪nk=1f
−1(Vik).

Remember that we want to show that there is a finite covering of f(A). By theorem 1.2.8,

it is enough to show that f(A) ⊂ ∪nk=1Vik . Does A ⊂ ∪nk=1f
−1(Vik) imply f(A) ⊂ ∪nk=1Vik?

prove it!

Corollary 1.2.13 (corollary 5.2.10). Let the topological spaces X and Y be homeomorphic,

then X is compact if and only if Y is compact.

Example 1.2.14. The open interval (0, 1) is not compact. To show this, we need to construct

a covering of (0, 1) that does not have a finite subcovering. (hint: construct something like

{1, 1
2
, 1
3
, . . . , 1

n
, . . . }.)

Theorem 1.2.15 (theorem 5.2.11). Let X be compact and A closed in X. Then A is

compact.

Proof. Let {Vi}i∈I be an open covering of the closed set A, i.e., A ⊂ ∪i∈IVi. Then

X = A ∪ AC = ∪i∈IVi ∪ AC .

Since X is compact, there is a subcovering Ui1 , . . . , Uin , i.e., X = ∪nk=1Uik , where for each k,

Uik = Vi for some i ∈ I, or Uik = AC . Is Ui1 , . . . , Uin a finite subcovering of A? Why? How

can we finish the proof?

Lemma 1.2.16 (lemma for theorem 1.2.17). In a topological space X, the intersection of a

finite set of neighborhoods of a point x is a neighborhood of x.

proof skeleton. Immediate. Apply the definition of neighborhood.
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Theorem 1.2.17 (theorem 5.2.12). Let X be a Hausdorff Space. If a subset F of X is

compact, then F is closed.

Proof. This is a theorem that requires us to prove again that some set F is closed. Review

how we prove a set is closed in lecture 4.

So, to prove F is closed, it is enough to show that there are no limit points of F in FC

(why?). Hence we need to prove the following:

∀z ∈ FC , there is a neighborhood N of z such that N ∩ F = ∅. (1)

Now let’s consider the compact set F . For each x ∈ F , let Vx be an open set containing x,

then we have F = ∪x∈FVx, then there is a subcovering Vx1 , . . . , Vxn , i.e., F = ∪ni=1Vxi . Hence

we need to prove

∀z ∈ FC , there is a neighborhood N of z such that N ∩ (∪ni=1Vxi) = ∅
⇐⇒ ∀z ∈ FC , there is a neighborhood N of z such that ∪ni=1(N ∩ Vxi) = ∅
⇐⇒ ∀z ∈ FC , there is a neighborhood N of z such that N ∩ Vxi = ∅,∀i = 1, . . . , n.

(2)

Let z ∈ FC be given. For each i = 1, . . . , n, there exists a neighborhood Nxi of z such that

Vxi ∩Nxi = ∅ (why?). Let N = ∩ni=1Nxi , then N is a neighborhood of z (by lemma 1.2.16),

and N ∩ Vxi = ∅,∀i = 1, . . . , n. We finished the proof.

Definition 1.2.18 (bounded, definition 5.3.1). A subset A of Rn is said to be bounded if

there is a real number K such that for each x = (x1, x2, . . . , xn) ∈ A, |xi| ≤ K, i = 1, . . . , n.

Lemma 1.2.19 (lemma 5.3.2). If A is a compact subset of R then A is closed and bounded.

proof skeleton. It is easy to prove by theorem 1.2.17 that A is closed. To prove A is bounded,

you need to construct an open covering of A, which will be reduced to a finite subcovering.

Note that, based on your construction, the finite subcovering is basically a collection of open

intervals. Now show that A is bounded.

1.3 Further Reading

5.1-5.4 in Mendelson.
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SI112: Advanced Geometry Spring 2018

Lecture Note 10 — Mar. 29th, Thursday

Prof.: Manolis Scribe: Liangzu

2 Lecture 10

Q: “Why don’t you use different colors”?

A: “It is not professional”.

2.1 Overview of This Lecture

Lecture 10 is a continuation of our exploration on compactness. Some theorems of great

relevance are introduced. However, some of the proofs are quite challenging and elusive.

2.2 Proof of Things

Lemma 2.2.1 (lemma 5.3.3). The closed interval [0, 1] is compact.

Proof. I read many proofs for this problem (this, and that), but none of them are rigorous.

What’s wrong with them? (read them, they are good lessons.)

Let {Ui}i∈I be any open covering of [0, 1]. The trick is to consider the set

A = {x ∈ [0, 1] : [0, x] can be covered by finitely many of the Ui’s} .

Note that A is non-empty and bounded, and 0 ∈ A. Then use the completeness property

of R to take s be the least upper bound of A. Note also that 0 ≤ s ≤ 1.

We first show that 0 < s. Since 0 ∈ Ui for some i ∈ I and Ui is open, Ui is a neighborhood

of 0. It follows that there is an open set (−ε, ε) such that 0 ∈ (−ε, ε) ⊂ Ui, which implies

[0, ε
2
] can be covered by Ui. Hence 0 < ε

2
≤ s, i.e., 0 < s.

We then show that for each 0 ≤ t < s, [0, t] can be covered by finitely many sets in A,

i.e.,t ∈ A. Suppose for the sake of contradiction t /∈ A. Then every point x ∈ A has to

satisfy x < t, for if x ≥ t and x ∈ A, then finitely many open sets covering [0, x] can also

cover [0, t]. It follows that t is an upper bound for A, but t < s, contradicting the choice of

s. Consequently, we have [0, s) ⊂ A.

Finally we will show that s = 1, which will prove that [0, 1] is compact. Suppose for the

sake of contradiction s < 1. There is U0 ∈ {Ui}i∈I such that s ∈ U0, which means that there

is an open set (s − ε, s + ε) such that s ∈ (s − ε, s + ε) ⊂ U0. Note that s − ε ∈ A, that is,

[0, s− ε] can be covered by finitely many open sets, say Ui1 , Ui2 , . . . , Uin . Then the open sets,
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Ui1 , Ui2 , . . . , Uin , together with the open set U0, will cover [0, s + ε
2
], i.e., s + ε

2
∈ A, which

contradicts the definition of s.

Corollary 2.2.2 (corollary 5.3.4). Each closed interval [a, b] is compact.

Proof. Immediate.

Theorem 2.2.3 (theorem 5.3.5). A subset A of the real line is compact if and only if A is

closed and bounded.

Proof. Let A be compact. Then by lemma 1.2.19 A is closed and bounded.

Let A be closed and bounded. Then there exists K > 0 such that A ⊂ [−K,K] and A is

closed in the compact set [−K,K]. By theorem 1.2.15, A is compact.

Definition 2.2.4 (basis for a topological space, definition 3.7.3). Let X be a topological

space and {Bi}i∈I a collection of open sets in X. {Bi}i∈I is called a basis for the open sets

of X if each open set in X is a union of members of {Bi}i∈I .

Remark 2.2.5. In lecture 8, we defined product topology without explicitly defining basis.

It is recommended to read 3.7 in Mendelson before proceeding. You should verify that the

sets of the form O1 × O2, O1, O2 open in the topological spaces X1, X2 respectively, are a

basis for the open sets of the topological space X1 ×X2.

Example 2.2.6. In R with standard topology a base for the topology is the collection of all

open intervals.

Definition 2.2.7 (dimension of topological space). Let X be a topological space, the dimen-

sion, denoted by dimX is the supremum among all lengths of chains X1 ( X2 ( · · · ( Xi

of closed and irreducible subsets of X.

Remark 2.2.8 (remark for definition 2.2.7). This definition is irrelevant, at least for now.

Lemma 2.2.9 (lemma 5.4.1). Let B be a basis for the open sets of a topological space Z.

If, for each covering {Bβ}β∈J of Z by members of B, there is a finite subcovering, then Z is

compact.

Proof. Let {Oi}i∈I be an open covering of Z, we need to show that there is a finite subcov-

ering. Since B is a basis for the topologocal space Z, for each i ∈ I, there exists Ji ⊂ J such

that Oi = ∪β∈JiBβ and that Bβ ⊂ Oi for each β ∈ Ji. Hence Z ⊂ ∪i∈IOi = ∪i∈I ∪β∈Ji Bβ.

By the supposition, Z ⊂ ∪nk=1Bβk , where Bβk is a subset of Oβk for some Oβk ∈ {Oi}i∈I .
Consequently, Z ⊂ ∪nk=1Oβk . We finished the proof.
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Theorem 2.2.10 (theorem 5.4.2). Let X and X ′ be compact topological spaces, then X×X ′

is compact.

Proof. The common strategy for proving compactness possibly fails to prove this theorem,

which should not stop you having a try. A complete but not compact proof is given here.

As mentioned above, the set {O × O′ : O is open in X and O′ is open in X ′} is a basis

for the open sets of the topological space X×X ′. By lemma 2.2.9, it is enough to show that

each covering of X ×X ′ by sets of the form O×O′, O is open in X, O′ is open in X ′, has a

finite subcovering.

Let {Oi×O′i}i∈I be such a covering. Then for each x0 ∈ X, the open covering {Oi×O′i}i∈I
is necessarily an open covering of the set X ′x0 = {x0} ×X ′ = {(x0, x′) : x′ ∈ X ′}. But X ′x0
is homeomorphic to X ′ and hence compact. There is therefore a finite subset Ix0 of I such

that {Oi ×O′i}i∈Ix0 covers X ′x0 .

Without loss of generality, we may assume that x0 ∈ Oj for each j ∈ Ix0 , for otherwise

we may delete Oj ×O′j and still cover X ′x0 (why still cover X ′x0 after deleting?).

The set O∗x0 = ∩i∈Ix0Oi is a finite intersection of open sets containing x0 and is therefore

an open set containing x0. Now we claim that {Oi×O′i}i∈Ix0 is an open covering of O∗x0×X
′.

For each (x, x′) ∈ O∗x0 × X
′ , we have that x ∈ O∗x0 = ∩i∈Ix0Oi and x′ ∈ X ′, which means

that x ∈ Oi for each i ∈ Ix0 and x′ ∈ O′j for some j ∈ Ix0 . Hence (x, x′) ∈ Oj ×O′j for some

j ∈ Ix0 .
Notice that {O∗x}x∈X is an open covering of the compact space X, hence there is a finite

subcovering O∗x1 , O
∗
x2
, . . . , O∗xn of X. Let us set I∗ = Ix1 ∪ Ix2 ∪ · · · ∪ Ixn and show that the

finite family {Oi ×O′i}i∈I∗ is a covering of X ×X ′, from which it will follow that X ×X ′ is

compact. Suppose (x, x′) ∈ X×X ′. Since {Oi}i∈I∗ covers X, x ∈ O∗xi and (x, x′) ∈ O∗xi ×X
′

for some xi. By our previous claim, (x, x′) ∈ Oj × O′j for some j ∈ Ixi , which certainly

implies that (x, x′) ∈ Oi × O′i for some i ∈ I∗. We have thus established that {Oi × O′i}i∈I∗
is a finite covering of X ×X ′ and that therefore X ×X ′ is compact.

Corollary 2.2.11 (corollary 5.4.3). Let X1, X2, . . . , Xn be compact topological spaces. Then∏n
i=1Xi is also compact.

Corollary 2.2.12. [0, 1]n is compact.

Theorem 2.2.13. A ⊂ Rn is compact if and only if A is closed and bounded.

Theorem 2.2.14. f : X → R, f is continuous and X is compact. Then there exists

x1, x2 ∈ X such that infx∈X f(x) = f(x1), supx∈X f(x) = f(x2).
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Proof. f(X) is compact (why?), and thus f(X) is closed and bounded. Because f(X) is

bounded, l = infx∈X f(x) and u = supx∈X f(x) exist (R is complete). Then l and u are limit

points of f(X) (by which theorem?). That f(X) is closed means that l, u ∈ f(X).

2.3 Further Reading

5.1-5.4 in Mendelson.
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