
SI112: Advanced Geometry Spring 2018

Lecture 11 — Apr. 3rd, Tuesday
Prof. Manolis Scribe: Liangzu

1 Lecture 11

1.1 Overview of This Lecture

1.2 Proof of Things
Definition 1.2.1 (connected, definition 4.2.1). A topological space X is said to be connected
if the only two subsets of X that are simultaneously open and closed are X itself and the
empty set ∅. A topological space which is not connected is said to be disconnected.

Example 1.2.2. Discrete topology is not connected, since every point is open and closed.
[0, 1] ∪ [2, 3] on the real line is not connected.

Lemma 1.2.3 (lemma 4.2.3). Let A be a subspace of a topological space X. Then A is
disconnected if and only if there exist two open subsets P and Q of X such that

A ⊂ P ∪Q,P ∩Q ⊂ AC , and P ∩ A ̸= ∅, Q ∩ A ̸= ∅.

Proof. On the one hand, suppose that A is disconnected. Then there is a subset P ′ of
A, different from ∅ and from A, such that P ′ is both relatively open and relatively closed
in A. This means that P ′C is also different from ∅ and from A and relatively open. Let
P,Q be such that P ′ = P ∩ A,P ′C = Q ∩ A, where P and Q are open subsets of X.
We therefore have that A = P ′ ∪ P ′C ⊂ P ∪ Q, for P ′ ⊂ P and P ′C ⊂ Q, and also
P ∩ Q ∩ A = (P ∩ A) ∩ (Q ∩ A) = P ′ ∩ P ′C = ∅ so that P ∩ Q ⊂ AC . Finally, P ′ = P ∩ A

and P ′C = Q ∩ A are non-empty.
On the other hand, given open sets P and Q satisfying the stated conditions, set P ′ =

P ∩ A and Q′ = Q ∩ A. Then A = A ∩ (P ∪ Q) = (A ∩ P ) ∪ (A ∩ Q) = P ′ ∪ Q′ and
P ′ ∩ Q′ = (A ∩ P ) ∩ (A ∩ Q) = ∅. Thus P ′ = Q′C , and P ′ is both relatively open and
relatively closed in A. Since P ′ ̸= ∅ and P ′ ̸= A, A is disconnected.

Theorem 1.2.4 (theorem 4.2.5). Let X and Y be topological spaces, and le f : X → Y be
continuous. If X is connected, then f(X) is connected.

Proof. Suppose f(X) is disconnected. Use 1.2.3, and after some steps we can derive that X
is not connected, a contradiction. Hence f(X) is connected.
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Theorem 1.2.5 (lemma 4.2.8). Let Y = {0, 1} with discrete topology be a topological space.
A topological space X is connected if and only if the only continuous mappings f : X → Y

are the constant mappings.

Proof. Let f : X → Y be a continuous non-constant mapping. Then P = f−1({0}) and
f−1({1}) are both non-empty (why?). Thus P ̸= ∅ and P ̸= X (why?). {0} and {1} are
open subsets of Y (why?) and f is continuous, therefore P and Q are open subsets of X.
But P = QC (why?), so P is both open and closed and consequently X is disconnected.
Thus, if X is connected, the only continuous mappings f : X → Y are constant mappings.

Conversely, suppose X is disconnected. Then there are non-empty open subsets P,Q of
X such that P ∩ Q = ∅ and P ∪ Q = X. Define a mapping f : X → Y as follows: If
x ∈ P , set f(x) = 0; if x ∈ Q, set f(x) = 1. f is continuous, for there are four open subsets,
∅, {0}, {1}, and Y of Y and f−1(∅) = ∅, f−1({0}) = P, f−1({1}) = Q, and f−1(Y ) = X, so
that the inverse image of an open set is open.

Theorem 1.2.6 (theorem 4.2.9). Let X and Y be connected topological spaces. Then X×Y

is connected.

Proof. It is enough to show that the only continuous mappings f : X × Y → {0, 1} are
constant mappings. Suppose, on the contrary, that there is a continuous mapping f :

X × Y → {0, 1} that is not constant. Then there are points (x0, y0), (x1, y1) ∈ X × Y

such that f(x0, y0) = 0, (x1, y1) = 1. If

Theorem 1.2.7. The product of connected spaces is connected.

Theorem 1.2.8 (theorem 4.3.4). A subset A of the real line that contains at least two
distinct points is connected if and only if it is an interval.

Theorem 1.2.9 (Intermediate Value Theorem, theorem 4.4.1). f : [a, b] → R continuous.
a ̸= b. v is any number between f(a) and f(b), i.e., f(a) < v < f(b). then there is x ∈ [a, b]

such that f(x) = v.

Proof. [a, b] is connected. It follows that f([a, b]) is connected and hence is an interval, which
means v ∈ f([a, b]).

Theorem 1.2.10 (theorem 4.5.1). The component of a is the largest connected set that
contains a.

Lemma 1.2.11 (lemma 4.5.2). In a topological space X, let b ∈ Cmp(a). Then Cmp(b) =

Cmp(a).

Theorem 1.2.12 (corollary 4.5.3). In a topological space X, define a b if b ∈ Cmp(a). Then
is an equivalence relation.
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Theorem 1.2.13 (path connectedness, 4.6.2).

homotopy equivalent.

Remark 1.2.14. disconnected, jump

define topology for graph.

1.3 Further Reading
5.1-5.4 in Mendelson.

3


	Lecture 11
	Overview of This Lecture
	Proof of Things
	Further Reading


