SI112: Advanced Geometry

Spring 2018

Lecture 11 — Apr. 3rd, Tuesday

Scribe: Liangzu

1 Lecture 11

1.1 Overview of This Lecture

1.2 Proof of Things

Definition 1.2.1 (connected, definition 4.2.1). A topological space X is said to be connected if the only two subsets of X that are simultaneously open and closed are X itself and the empty set \emptyset . A topological space which is not connected is said to be disconnected.

Example 1.2.2. Discrete topology is not connected, since every point is open and closed. $[0,1] \cup [2,3]$ on the real line is not connected.

Lemma 1.2.3 (lemma 4.2.3). Let A be a subspace of a topological space X. Then A is disconnected if and only if there exist two open subsets P and Q of X such that

$$A \subset P \cup Q, P \cap Q \subset A^C$$
, and $P \cap A \neq \emptyset, Q \cap A \neq \emptyset$.

Proof. On the one hand, suppose that A is disconnected. Then there is a subset P' of A, different from \emptyset and from A, such that P' is both relatively open and relatively closed in A. This means that P'^{C} is also different from \emptyset and from A and relatively open. Let P, Q be such that $P' = P \cap A, P'^{C} = Q \cap A$, where P and Q are open subsets of X. We therefore have that $A = P' \cup P'^{C} \subset P \cup Q$, for $P' \subset P$ and $P'^{C} \subset Q$, and also $P \cap Q \cap A = (P \cap A) \cap (Q \cap A) = P' \cap P'^{C} = \emptyset$ so that $P \cap Q \subset A^{C}$. Finally, $P' = P \cap A$ and $P'^{C} = Q \cap A$ are non-empty.

On the other hand, given open sets P and Q satisfying the stated conditions, set $P' = P \cap A$ and $Q' = Q \cap A$. Then $A = A \cap (P \cup Q) = (A \cap P) \cup (A \cap Q) = P' \cup Q'$ and $P' \cap Q' = (A \cap P) \cap (A \cap Q) = \emptyset$. Thus $P' = Q'^C$, and P' is both relatively open and relatively closed in A. Since $P' \neq \emptyset$ and $P' \neq A$, A is disconnected. \Box

Theorem 1.2.4 (theorem 4.2.5). Let X and Y be topological spaces, and le $f : X \to Y$ be continuous. If X is connected, then f(X) is connected.

Proof. Suppose f(X) is disconnected. Use 1.2.3, and after some steps we can derive that X is not connected, a contradiction. Hence f(X) is connected.

Theorem 1.2.5 (lemma 4.2.8). Let $Y = \{0, 1\}$ with discrete topology be a topological space. A topological space X is connected if and only if the only continuous mappings $f : X \to Y$ are the constant mappings.

Proof. Let $f : X \to Y$ be a continuous non-constant mapping. Then $P = f^{-1}(\{0\})$ and $f^{-1}(\{1\})$ are both non-empty (why?). Thus $P \neq \emptyset$ and $P \neq X$ (why?). $\{0\}$ and $\{1\}$ are open subsets of Y (why?) and f is continuous, therefore P and Q are open subsets of X. But $P = Q^C$ (why?), so P is both open and closed and consequently X is disconnected. Thus, if X is connected, the only continuous mappings $f : X \to Y$ are constant mappings.

Conversely, suppose X is disconnected. Then there are non-empty open subsets P, Q of X such that $P \cap Q = \emptyset$ and $P \cup Q = X$. Define a mapping $f : X \to Y$ as follows: If $x \in P$, set f(x) = 0; if $x \in Q$, set f(x) = 1. f is continuous, for there are four open subsets, $\emptyset, \{0\}, \{1\}, \text{ and } Y \text{ of } Y \text{ and } f^{-1}(\emptyset) = \emptyset, f^{-1}(\{0\}) = P, f^{-1}(\{1\}) = Q, \text{ and } f^{-1}(Y) = X, \text{ so that the inverse image of an open set is open.}$

Theorem 1.2.6 (theorem 4.2.9). Let X and Y be connected topological spaces. Then $X \times Y$ is connected.

Proof. It is enough to show that the only continuous mappings $f : X \times Y \to \{0, 1\}$ are constant mappings. Suppose, on the contrary, that there is a continuous mapping $f : X \times Y \to \{0, 1\}$ that is not constant. Then there are points $(x_0, y_0), (x_1, y_1) \in X \times Y$ such that $f(x_0, y_0) = 0, (x_1, y_1) = 1$. If

Theorem 1.2.7. The product of connected spaces is connected.

Theorem 1.2.8 (theorem 4.3.4). A subset A of the real line that contains at least two distinct points is connected if and only if it is an interval.

Theorem 1.2.9 (Intermediate Value Theorem, theorem 4.4.1). $f : [a, b] \to \mathbb{R}$ continuous. $a \neq b. v$ is any number between f(a) and f(b), i.e., f(a) < v < f(b). then there is $x \in [a, b]$ such that f(x) = v.

Proof. [a, b] is connected. It follows that f([a, b]) is connected and hence is an interval, which means $v \in f([a, b])$.

Theorem 1.2.10 (theorem 4.5.1). The component of a is the largest connected set that contains a.

Lemma 1.2.11 (lemma 4.5.2). In a topological space X, let $b \in Cmp(a)$. Then Cmp(b) = Cmp(a).

Theorem 1.2.12 (corollary 4.5.3). In a topological space X, define a b if $b \in Cmp(a)$. Then is an equivalence relation.

Theorem 1.2.13 (path connectedness, 4.6.2).

homotopy equivalent.

Remark 1.2.14. disconnected, jump define topology for graph.

1.3 Further Reading

 $5.1\mathchar`-5.4$ in Mendelson.