SI112: Advanced Geometry

Lecture 14-15 — Apr. 17th, Tuesday

Prof. Manolis

Scribe: Liangzu

1 Lecture 14-15

1.1 Overview of This Lecture

The proof that I_V is generated by $(I_V)_1$ is in the previous lecture note. To make things correct, \mathbb{F} is assumed to be \mathbb{R} or \mathbb{C} , which is not the case on the board.

1.2 Proof of Things

Proposition 1.2.1. Let V be a d-dimensional linear subspace of \mathbb{F}^n and $I_V \in \mathbb{F}[x]$ the set of polynomials vanishing on V. Then we have $V = Z(I_V)$, where

$$Z(I_V) = \{ v \in \mathbb{F}^n : f(v) = 0, \forall f \in I_V \}.$$

Proof. Suppose $v \in V$, then f(v) = 0 for each $f \in I_V$, which means $v \in Z(I_V)$. Hence $V \subset Z(I_V)$.

On the other hand, let $v \in Z(I_V)$. Then we have f(v) = 0 for any $f \in I_V$. Specifically, let u_{d+1}, \ldots, u_n be a basis for V^{\perp} , then for the linear forms $f_{u_{d+1}}, \ldots, f_{u_n} \in I_V$, we have

$$f_{u_{d+i}}(v) = u_{d+i}^T v = 0$$
 for $i = 1, \dots, n - d$,

implying that $v \in V$. Hence $Z(I_V) \subset V$.

Definition 1.2.2 (addition of ideals). Let R be a ring and $I_1, I_2 \subset R$ be ideals. We define addition operation of ideals as follows:

$$I_1 + I_2 = \{r \in R : r = r_1 + r_2 \text{ for some } r_1 \in I_1, r_2 \in I_2\}.$$

Remark 1.2.3. An observation is that $I_1 + I_2$ is an ideal, as you should verify.

Proposition 1.2.4. Let I_1, I_2 be ideals of a ring. Then $I_1 \cap I_2$ is an ideal.

Proof. Immediate.

Proposition 1.2.5 (p). Let $I_1, I_2 \subset F[x]$ be ideals. Then $\langle I_1 \cup I_2 \rangle = I_1 + I_2$.

Proof. Immediate.

Proposition 1.2.6. Let $I_1, I_2 \subset F[x]$ be ideals. Then $Z(I_1 \cup I_2) = Z(\langle I_1 \cup I_2 \rangle) = Z(I_1 + I_2)$.

Proof. Immediate.

Let R be a ring and $I_1, I_2 \subset R$ be ideals. The set

$$\{r \in R : r = r_1 r_2, \text{ where } r_1 \in I_1, r_2 \in I_2\}$$

is not neccesarily an ideal of R. This motivates definition 1.2.7.

Definition 1.2.7 (product of ideals). Let R be a ring and $I_1, I_2 \subset R$ be ideals. We define product of ideals as follows:

 $I_1I_2 = \{r \in R : \exists l \in \mathbb{N}^+ \text{ such that } r = \sum_{i=1}^l r_i^1 r_i^2, \text{ where } r_i^1 \in I_1, r_i^2 \in I_2 \text{ for } i = 1, \dots, l\}.$

Remark 1.2.8. I_1I_2 is an ideal, as you should verify.

Proposition 1.2.9. Let I_1, I_2 be ideals of a ring R. Then $I_1I_2 \subset I_1 \cap I_2$.

Proof. Immediate.

Proposition 1.2.10. Let I_1, I_2 be ideals of the ring $\mathbb{F}[x]$. Then $Z(I_1) \cup Z(I_2) = Z(I_1I_2)$.

Proof. For each $f \in I_1I_2$, $f = \sum_{i=1}^s h_i g_i$ for some $h_1, \ldots, h_s \in I_1, g_1 \ldots, g_s \in I_2$. Then it is easy to see that f vanishes on $Z(I_1) \cup Z(I_2)$. Hence

$$I_1I_2 \subset I_{Z(I_1)\cup Z(I_2)} \Rightarrow Z(I_1) \cup Z(I_2) \subset Z(I_1I_2).$$

On the other hand, let $v \in Z(I_1I_2)$. Suppose for the sake of contradiction that $v \notin$ $Z(I_1) \cup Z(I_2)$, then there exist some $h \in I_1$ and $g \in I_2$ such that $h(v) \neq 0$ and $g(v) \neq 0$, which means that $hg(v) \neq 0$ (F is an integral domain). But $hg \in I_1I_2$, contradicting to the fact $v \in Z(I_1I_2)$. Hence $v \in Z(I_1) \cup Z(I_2)$.

It can be easily verified that if an element r is in an ideal, then for each $n \in \mathbb{N}^+$ we have that r^n is in the same ideal. Conversely, we define a new set, called the radical of an ideal, as follows.

Definition 1.2.11 (radical of an ideal). Let I be an ideal of a ring R. Then the set

$$\sqrt{I} = \operatorname{rad}(I) = \{r \in R : \exists n \in \mathbb{N}^+ \text{ such that } r^n \in I\}$$

is called the radical of the ideal I.

Exercise 1.2.12. Let I be an ideal of a ring and \sqrt{I} the radical of I. Show that $I \subset \sqrt{I}$.

Definition 1.2.13 (Zariski Topology). We define $Y \subset \mathbb{F}^n$ to be a closed set if there is an ideal I of $\mathbb{F}[x]$ such that Y = Z(I). These closed sets form a topology (indeed, this is called *Zariski Topology*).

Remark 1.2.14. To show that the closed sets defined in definition 1.2.13 form a topology, we need to show that

- 1. \emptyset is closed.
- 2. \mathbb{F}^n is closed.
- 3. Any union of finitely many closed sets are closed.
- 4. Any intersection of closed sets are closed.

The terms 1, 2, 3 are easily verified (for the term 3, you need to realize that if Y_1, Y_2 are closed, then there exist ideals I_1, I_2 such that $Y_1 \cup Y_2 = Z(I_1I_2)$). To verify the term 4, you may want to check the proof by Ziyu in the piazza.

The definitions of *zero divisor* and *integral domain*, already given in lecture 12 (TA Session), are repeated here for your convenience.

Definition 1.2.15 (zero divisor). A nonzero element a in a ring R is called a *zero divisor* if there is a nonzero element b in R such that ab = 0.

Definition 1.2.16 (integral domain). A commutative ring R with identity is called an *integral domain* if, for every $a, b \in R$ such that ab = 0, either a = 0 or b = 0.

Example 1.2.17 (The product of nonzero elements would be zero).

1	0	0	0		0	0
0	0	0	1	_	0	0

Example 1.2.18. $\mathbb{F}[x]$ is an integral domain. then $pq = 0 \Rightarrow p = 0$ or q = 0. Also check this page.

Proposition 1.2.19. Let $X_1, X_2 \subset \mathbb{F}^n$. Then $I_{X_1 \cup X_2} = I_{X_1} \cap I_{X_2}$.

Proof. Immediate.

Definition 1.2.20 (prime ideal). Let *I* be an ideal of the ring *R*. *I* is called *prime ideal* if $ab \in I$ where $a, b \in R$, then $a \in I$ or $b \in I$.

Example 1.2.21. The ring R itself is an ideal in R and is prime.

Example 1.2.22 (p). The set $P = \{0, 2, 4, 6, 8, 10\}$ is an ideal in $\mathbb{Z}_{12} = \{0, 1, \dots, 11\}$. This ideal is prime.

Example 1.2.23 (p). The set $4\mathbb{Z}$ of integers that are multiple of 4, i.e.,

$$4\mathbb{Z} = \{\ldots, -8, -4, 0, 4, 8, \ldots\},\$$

is an ideal in \mathbb{Z} . This ideal is not prime. However, $2\mathbb{Z}$ is a prime ideal in \mathbb{Z} . Furthermore, $p\mathbb{Z}$ is a prime ideal in \mathbb{Z} if and only if p is a prime number.

Theorem 1.2.24. Let V be d-dimensional linear subspace of \mathbb{F}^n . Then I_V is a prime ideal.

Proof. If $V = \mathbb{F}^n$, i.e., d = n, then $I_V = I_{\mathbb{F}^n} = \{0\}$, where $0 \in \mathbb{F}[x]$ denotes the zero polynomial in $\mathbb{F}[x]$. For any $g, h \in \mathbb{F}[x]$ such that

$$gh \in I_V \iff gh = 0$$
,

we have, by example 1.2.18,

$$g = 0 \text{ or } h = 0 \iff g \in I_V \text{ or } h \in I_V.$$

This means that I_V is a prime ideal.

Now we begin to consider the case that V is a proper subset of \mathbb{F}^n , i.e., d < n. Let $v_1, v_2, \ldots, v_d \in \mathbb{F}^n$ be an orthonormal basis for V and $u_{d+1}, u_{d+2}, \ldots, u_n \in \mathbb{F}^n$ an orthogonal basis for V^{\perp} , where V^{\perp} is the orthogonal complement of V. Hence v's and u's form an orthonormal basis for \mathbb{F}^n , say

$$B = [v_1, v_2, \dots, v_d, u_{d+1}, u_{d+2}, \dots, u_n], \qquad (1.2.1)$$

and we have $B^T B = I$. Also let $B_V = [v_1, v_2, ..., v_d] \in \mathbb{F}^{n \times d}, B_{V^{\perp}} = [u_{d+1}, u_{d+2}, ..., u_n] \in \mathbb{F}^{n \times (n-d)}$.

For any $g, h \in \mathbb{F}[x]$ such that $gh \in I_V$, there exist $p, q \in \mathbb{F}[x]$ such that for each $r \in \mathbb{F}^n$, we have $p(B^T r) = g(r), q(B^T r) = h(r)$. Hence

$$gh(r) = g(r)h(r) = p(B^{T}r)q(B^{T}r) = p(v_{1}^{T}r, \dots, v_{d}^{T}r, u_{d+1}^{T}r, \dots, u_{n}^{T}r)q(v_{1}^{T}r, \dots, v_{d}^{T}r, u_{d+1}^{T}r, \dots, u_{n}^{T}r) = (p'(v_{1}^{T}r, \dots, v_{d}^{T}r) + \sum_{i=1}^{n-d} (u_{d+i}^{T}r)p_{i}(r))(q'(v_{1}^{T}r, \dots, v_{d}^{T}r) + \sum_{i=1}^{n-d} (u_{d+i}^{T}r)q_{i}(r)),$$
(1.2.2)

where $p', q' \in \mathbb{F}[x_1, x_2, \dots, x_d]$ and $p_i, q_i \in \mathbb{F}[x]$ for $i = 1, 2, \dots, n-d$. Since gh vanishes on V, we have that $p'(v_1^T w, \dots, v_d^T w)q'(v_1^T w, \dots, v_d^T w) = 0$ for each $w \in V$.

For any $\alpha \in \mathbb{F}^d$, let $z = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_d v_d \in V$. Then we have

$$p'(\alpha)q'(\alpha) = p'(\alpha_1, ..., \alpha_d)q'(\alpha_1, ..., \alpha_d) = p'(v_1^T z, ..., v_d^T z)q'(v_1^T z, ..., v_d^T z) = 0.$$
(1.2.3)

This means p'q' = 0, and thus by example 1.2.18, we have

$$p' = 0 \text{ or } q' = 0$$

$$\Rightarrow g(r) = \sum_{i=1}^{n-d} (u_{d+i}^T r) p_i(r) \text{ or } h(r) = \sum_{i=1}^{n-d} (u_{d+i}^T r) q_i(r) \text{ for any } r \in \mathbb{F}^n$$
(1.2.4)

$$\Rightarrow g \in I_V \text{ or } h \in I_V.$$

This proves that I_V is a prime ideal.

Proposition 1.2.25. Let I_1, I_2 be ideals in $\mathbb{F}[x]$ and $I_1 \subset I_2$. Then we have $Z(I_2) \subset Z(I_1)$.

Proof. Immediate.

We discussed problem 3 in the quiz, its geometry, and its applications in data clustering. Have a look at this paper for further information.

Theorem 1.2.26. Let $X \subset \mathbb{F}^n$ and $I_X \subset \mathbb{F}[x]$ the vanishing ideal on X. Then $Z(I_X) = \overline{X}$, where \overline{X} is the closure of X.

Proof. Obviously $\overline{X} \subset Z(I_X)$ since $X \subset Z(I_X)$ and $Z(I_X)$ is closed. Let $\overline{X} = Z(J)$, where $J \in \mathbb{F}[x]$ is an ideal. Hence $J \subset I_{\overline{X}}$. Then we have

$$X \subset \overline{X} \Rightarrow J \subset I_{\overline{X}} \subset I_X \Rightarrow Z(I_X) \subset Z(J) \Rightarrow Z(I_X) \subset \overline{X}.$$

Review the final picture for a preview of the next week (radical, Hilbert Basis Theorem, Hilbert's Nullstellensatz, etc.)

1.3 Further Reading