SI112: Advanced Geometry Spring 2018

Lecture 24 — May 15th, Tuesday
Prof. Manolis Scribe: Liangzu

1 Lecture 24

1.1 Overview of This Lecture

1.2 Proof of Things

Definition 1.2.1. The spectrum of a ring R, denoted by Spec(R), is the set of all prime
ideals in R. That is

Spec(R) = {I C R: I is prime ideal of A}.

Proposition 1.2.2 (contraction of an ideal). Let f : A — B be a ring homomorphism and
I C B an ideal. Then the inverse image f~(I) is an ideal of A, called the contraction of I
to A.

Proof. Firstly, 0 € f~1(I) since f(0) € I. Let a,b € f~Y(I) = f(a), f(b) € I and ¢ € A.
Then
fla+b)=fla)+ fb)el=a+be f7'(I)

and
flac) = fla)f(e) € I = ac € f7(1).
O

Proposition 1.2.3. Let f : A — B be a ring homomorphism and P C B a prime ideal.
Then f~Y(P) is a prime ideal of A.

Proof. Let a,b € A be such that ab € f~'(P) = f(ab) = f(a)f(b) € P. Then we have
either f(a) € P <= a € fY(P)or f(b) € P < b e f~Y(P), which implies f~!(P) is

prime. Il

Remark 1.2.4 (remark for Propsitions 1.2.2 and 1.2.3). If A C B and f : A — B is the
inclusion mapping. Then for a prime ideal P in B, f~'(P) = PN A is prime.

Proposition 1.2.5. Let f : A — B be a surjective ring homomorphism and (Q C A a prime
ideal containing Ker(f). Then f(Q) is a prime ideal of B.


https://en.wikipedia.org/wiki/Extension_and_contraction_of_ideals

Proof. 1t is easy to verify that f(Q) is an ideal. Let y;,y2 € B be such that y,y, € f(Q).
Then since f is surjective, there exist x1, 29 € A and x € @) such that f(z1) = y1, f(22) = ¥
and f(z) = y1y2. Hence

flrizg —x) =0= 2129 — 2 € Ker(f) = 2120 —x € Q = 2122 € Q.

This implies either z1 or x5 is in @ and thus either y; = f(z1) or yo = f(z2) isin f(Q). O

Corollary 1.2.6. Let A be a ring and J an ideal of A. Then for each P € Spec(A) such
that P O J, w(P) is prime, where m : A — A/J is the canonical homomorphism.

Proposition 1.2.7. Let A be a ring and J an ideal of A. Then if Py, Py are ideals of
A such that J C P € P, n(J) € n(P) € 7(P), where m : A — A/J is the canonical

=

homomorphism.

Proof. 1t is obvious that 7(J) € 7(P;) and w(P;) C m(P,). Suppose for the sake of con-
tradiction that w(P;) = w(P,). Let po € P,\P;, then there is p; € Pi,j € J such that
P —p1 =] <= po = Jj + p1, which implies p, € P; since 5 € J C P; and P, is an ideal, a
contradiction. [

Proposition 1.2.8. Let A be a ring and J an ideal of A. Then
Spec(A/J) = {n(P): P € Spec(A) and J C P},
where m: A — A/ J is the canonical projection that maps a € A toa+J € A/J.

Proof. Let Q € Spec(A/J) and let P = 771(Q). Then by Proposition 1.2.3, P € Spec(A).
We have 7(P) = (7 1(Q)) = Q since 7 is surjective. [0] € Q since Q is an ideal. Hence
~0) c v Q)= J C P. O

Remark 1.2.9. Let m : A — A/J be the canonical homomorphism. Then from the discus-
sions above, we can see that there is a one-to-one correspondence between the prime ideals
containing J in A and the prime ideals in A/.J. Moreover, since if @1 C @2 are two ideals
in A/J, then 771(Q1) € 77 1(Q3), and Proposition 1.2.7, their “order” are preserved.

Definition 1.2.10. Let A be a ring and J an ideal of A. Then the dimension of A/J, called
Krull dimension is the supremum of the lengths of all chains Q; 2 Q-1 2 -+ 2 Qo of prime

ideals Q;, Q1—1,...,Qo € Spec(A/J).

Remark 1.2.11. By Corollary 1.2.6 and Proposition 1.2.7, achain b, 2D P12 --- 2 Py =P
of prime ideals properly containing an ideal P gives rise to a chain 7(F)) 2 m(F_1) 2 -+ 2
(Py) = m(P) = {[0]}. Moreover, if A is an integral domain, then {[0]} is prime in A/P.

Hence these two chains are of the same length.

=
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Definition 1.2.12. Let Y C C™ be an irreducible closed set. We define dimY to be the
supremum among all lengths [ of chains ¥; C ¥,y € --- C Y] C Yy =Y of closed and

irreducible subsets Y7, ..., Y] contained in Y.

Remark 1.2.13. Chains --- C Y;--- C Y] C Y| of infinite length can not exist because this

would imply infinite ascending chains of prime ideals that are not stable.

Remark 1.2.14. Note that it Y, C Y, 1 € --- C Y] C Yy =Y, where Y;’s are irreducible and

closed and thus Iy,’s are prime ideals, then we have

ViCYiaG o GCYigY,=Y

) S-S Z(Iyy) C Z(Iy,) = Z(Iy)
=YY C--CYi Y=Y
=YY c- IS =Y

C[m,xg,...,zn]
Iy

with the same length whose ideals are in Spec(ly ), which implies dimY" > dim

) gives rise to a chain
(C[ml,xz,...,:pn})
Ty :

By Proposition 1.2.3, a chain whose ideals are in Spec(

By Remark 1.2.11, on the other hand, a chain whose ideals are in Spec([y) gives rise to a

chain with the same length whose ideals are in Spec( , which implies dimY <

C[xlvx%--wwn])
Iy

dim(—(c[xl’x[i”"m"] ).

Definition 1.2.15. Let Y be a closed set of C*. We define dimY to be the maximum

dimension max;—; 2. sY;, where Y;,... Y, are the unique irreducible components of Y.

Proposition 1.2.16. Let Y be a closed set in C™ and Y7, Ys, ..., Y, the unique irreducible
components of Y. Then

C ce sy Tp . Clry,xo,..., 2,
dim( [xl’xj; ¥ ]) = Z:rPans dim( 1 x;m T ])
Proof. A chain of prime ideals containing Iy, can contain Iy since Iy C Iy, fori =1,2,...,s.
Hence Cl ] Cl ]
dim( L1, T2,...,Tn ) < max dim( L1, T2,...,Tn )

[Y i=1,2,...,8 [Yz

On the other hand, let P € Spec(C[x1, s, ..., x,]) such that Iy = Iy, N Iy, N---N 1y, C P.

Then we have Iy, C P for some j, which implies

C U Clzy, 22, ..., 2y
dlm( [.Tl, L2, ;L ]) > max dlm( [1’1 T2 £ ])
Iy i=1,2,..., Iy,
(we can replace Iy by Iy, in a chain where every prime ideal contains Iy ). ]



Proposition 1.2.17. Let J be an ideal of Clxy,xs,...,2z,]. Then

.....

PDJ

Moreover, there are finitely many factors in this intersection.

Proof. Let Y1,Ys,...,Y; be the unique irreducible decomposition of Z(J). Then we have

Z(J)=YiUY,U---UY,
:>\/j:[Z(J):IY1m[Y2ﬂ"‘ ﬂ]ys.

Proposition 1.2.18. Let J be an ideal of Clxy,xs,...,2,]. Then

C[ml,xQ, RN ,xn])
J

(C[ml,.’ll'g, RN ,$n])

Vi

Proof. dlm(w) > dlm(W) since J C v/J. On the other hand, let P €

Spec(Clzy, 2, . . ., x,]) such that P D J. It is enough to show that P O /J. For r € v/J,
we have r* € JC P =r € P. Il

dim( = dim(

The aim is to achieve three goals in the next few lectures:
o prove that dim Flzy, 2o, ..., 2,] = n,

e Noether Normalization, and

o Hilbert Functions.

Definition 1.2.19 (integral). Let B be a ring and A a subring of B. An element b € B is
called integral over A if
V" + 10" 4+ ab+ g =0

for some ag, aq,...,0,_1 € A.

Proposition 1.2.20 (AM\2.4). Let M be a finitely generated A-module, let I be an ideal of A,
and let f be an A-module endomorphism of M such that f(M) C IM = {ajw;+- -+ a,w, :
ne€N o, € I,w; € M}. Then f satisfies an equation of the form

f"+a1f”—1+...+an:0’
where o;’s are in 1.

Proof. Please read the pictures or the book for the proof. [
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Definition 1.2.21 (faithful module). Let A be a ring and M an A-module. Then M is

called faithful if there is no nonzero element « in A such that aM = 0.

Proposition 1.2.22 (5.1\AM). Let B be a ring, let A be a subring of B, and let b € B.

Then the following are equivalent.
1. b is integral over A.
2. A[b] is a finitely generated A-module.
3. A[b] is contained in a ring C' such that C is a finitely generated A-module.
4. there is a faithful A[b]-module M which is finitely generated over A.

Proof.

1 = 2). Since b is integral over A, we have
b" + Oénflbnil + -+ Oélb +ag = 0 < V" = —(Oénflbnil + -+ Oélb -+ Oéo)

for some g, oy, . . ., a1 € A, which implies A[b] is (finitely) generated by 1,b, ..., 0" L.

2 = 3). Take C' = A[b)].

3 = 4). Take M = C, which is a A[b]-module since A = A[l] C A[b ] C C. Then
M is faithful because if there is p(b) € A[b] such that p(b)M = p(b) = C = 0, then

p(1)-1=0.

4 = 1). Let f: M — M be an endomorphism of multiplying b, i.e., f(m) = bm for
cach m € M. Then f(M) =bM C AM. By Proposition 1.2.20, we have

(V" + a1 b+ anb+ ag)M = 0.

Since M is faithful, " + ay, 16" 1 4+ - - - 4+ b + ap = 0. This implies b is integral over
A.



SI112: Advanced Geometry Spring 2018

Lecture 26 — May 24th, Thursday
Prof. Manolis Scribe: Liangzu

2 Lecture 26

2.1 Overview of This Lecture

The goal of lecture 26 is to prove Theorem 2.2.13.

2.2 Proof of Things

Proposition 2.2.1. Let P be a prime ideal of a ring R, then S = R— P is a multiplicatively
closed set (i.e., s1s9 € S for each s1,s9 € S), and 0 ¢ S.

Proof. Left as an exercise. O

Proposition 2.2.2. Let R be a ring and P,Q prime ideals of R. Let ¢ : R — Rp be a ring
homomorphism that maps r € R to T € Rp. If QN (R\P) # 0, then ¢(Q)Rp is not a prime
ideal.

Proof. Since Q N (R\P) # 0, let ¢ € Q N (R\P). Then { € ¢(Q),; € Rp and thus

1
2 € ¢(Q)Rp, which implies that ¢(Q)Rp is not prime. O

For the sake of simplicity, we will use QRp to denote ¢(Q)Rp in what follows.

Proposition 2.2.3. Let R be a ring and P,Q prime ideals of R with QN (R\P) = 0. Then
Q is a prime ideal of R if and only if QRp is a prime ideal of Rp.

Proof. Note that QRp is properly contained by Rp since 1 ¢ QRp (1 ¢ Q and QN (R\P) =
0), and that the set QRp is of the form

{%: q € Qandt € R\P}.
Then

o =). Let %, ‘Z—j € Rp be such that % € QRp, then we have ¢q1¢2 € @ since t1ty € R\ P,

which means that either ¢ € @ or ¢ € ). Hence we have either % € QRp or
j—j € QRp.



e «<). Let 1,420 € R be such that ¢1qo € @ and let t1,t, € R\P. Then we have
%, Z—j € Rp and % € QRp. This implies either % € QRp or ‘t?—; € QRp. Hence we

have either ¢; € Q or ¢o € Q. There is a much quicker way: ¢~'(QRp) = Q is prime
by Proposition 1.2.3.

O

Remark 2.2.4 (remark for Proposition 2.2.3). The occurrence of QRp is weird. It is because
#(Q) is in general not an ideal, but ¢(Q)Rp always is.

Proposition 2.2.5. Let P be a prime ideal of a ring R and S = R — P, then the ring

Rp = S7'R contains only one mazimal ideal equal to PRp.

Proof. The elements £ with p € P form an ideal m = PRp in Rp. If 2 ¢ m, then b ¢ P,
hence b € S and therefore, noticing ¢t € 5, %’ is a unit in Rp (%’ £ =1). It follows that
if I is an ideal in Rp and I ¢ m, then I contains a unit, say %, which implies I contains

1=2.L=1 and hence I = Rp. Thus m is the only maximal ideal in Rp. O

Definition 2.2.6. Let ¢ : A — B be an injective ring homomorphism, an element b € B is

called integral over A wvia ¢ if
0" + - 1)b" ™ 4 -+ pan)b + () = 0

for some ag, aq,...,q,_1 € A. Moreover, we say that B is integral over A if for each b € B,

b is integral over A.

Corollary 2.2.7 (5.2\AM). Let by, by,...,b, € B be such that they are integral over A.
Then the ring Alby, by, ..., b,| is a finitely generated A-module.

Proof. The case n = 1 is part of Proposition 1.2.22. Suppose inductively it holds for the
case n — 1, i.e., the ring A, 1 = A[by, by, ..., b, 1] is a finitely generated A-module. Since
A C A,y and b, is integral over A, b, is integral over A, ;. Therefore A[by, by, ..., b,] =
A, _1]bn] is a finitely generated A,_;-module by the case n = 1. Then we have

A[bly 627 <o 7bn] = Anfl + Anflbn + Anflbi + - Anflb;np

where
Ani = Api(b1,ba, ... by1) + pa(bi,bo, .o bey) + oo+ pro(bi, ba, .o boy)
for some
Pr(biybay oo bu1),pa(bisbay o bust)s oo D(bryboy o by1) € A,
which implies that A[by,bs,. .., b,] is finitely generated. O

7



Proposition 2.2.8 (5.6\AM). Let A C B be rings, B integral over A (via the inclusion
mapping).

1. If Q is an prime ideal of B and P = ANQ, then B/Q is integral over A/P.
2. If S is a multiplicatively closed subset of A, then S™'B is integral over ST A.
Proof.
1. Let b € B. Then there exists ag, ..., a,_1 € A such that
b 4+ 0" b+ ag = 0.

Let 1p: A - A/P,ng : B — B/Q be the canonical homomorphisms, let i : A — B be
the inclusion mapping. Then by First Isomorphism Theorem, there exists an injective
ring homomorphism i* : A/P — B/Q such that mgi = i*mp (have a look at the
diagram in the pictures). Then we have
TV + a1V ab+ ag) =0
= B+ foa] B 4 - o]+ o] =0

Noticing that [a;] € i*(A/P) for i = 0,1,...,n — 1 and ¢* is injective, B/( is integral
over A/P via i*.

2. First note that S™'A C S7'B. Let b € B,s € S (hence 2 € S7'B). Then there exists
g, ...,0,_1 € A such that

b + D"+ b+ o = 0.

Let ¢ : B — S™'B be a ring homomorphism that maps z € B to £ € S~!B. Then we

have

p(0" + 0" 4+ ab+ag) =0

b (679 bn—l (07] b Qp

= — et ==+ —==0
1 + T 1 +--+ 1 1+ 1

— (-)"+ —— ()" -)+—=0.
(8) + . (8) + +s”*1(s)+s”

Noticing that (€ S~'A for k =1,2,...,n—1, S7'B is integral over S~'A (via the

inclusion mapping).
Il

Proposition 2.2.9 (5.7\AM). Let A C B be integral domains, B integral over A (via the
inclusion mapping). Then A is a field if and only if B is a field.
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Proof.

1. =). Let y € B and y # 0. There exists ay, ..., a, 1 € A such that
Y 4y ay + g = 0.

Without loss of generality suppose that n is minimal. If oy = 0, then y(y" ! +
Q1Y%+ -+ + ) = 0, which implies "' + a,,_1%™" 2 + - - - + 1, contradicting to
the minimality of n. Hence ag # 0. Since A is a field, a;' € A C B. Then

yl—ag (" o1y P A )] = 1
Hence y~! = —ag ' (y" ' + ap1y" 24 -+ ;) € B.

2. «<). Let x € AC Band x # 0. Then x=! € B. There exists 8y, ..., ,-1 € A such
that
(™)™ + Baca (™)™ 4 B + By = 0.

Hence
27 = =Byt + o+ S+ Boa™ ) € A,

]

Corollary 2.2.10 (5.8\AM). Let A C B be rings, B integral over A (via the inclusion
mapping). If Q is an prime ideal of B and P = AN Q, then Q is a maximal if and only if

P is mazximal.

Proof. Since P and () are prime, A/P and B/(Q are integral domains. By Proposition 2.2.8,
B/Q is integral over A/P. Then by Proposition 2.2.9, () is maximal if and only if B/Q is a
field if and only if A/P is a field if and only if P is maximal. [

Proposition 2.2.11 (5.9\AM). Let A C B be rings, B integral over A (via the inclusion
mapping). If Q, Q" € Spec(B) such that Q' C Q and Q' NA=QNA=P € Spec(A). Then
Q'=Q.

Proof. Note that by Proposition 2.2.3, QBp,Q)'Bp € Spec(Bp), and that P C @), PAp C Ap
and Ap C Bp, we have
PAp C QBp Ap C Ap

(it @QBpNAp = Ap <= Ap C @Bp, then 1 € QBp <= @QBp = Bp, contradicting that
(@) Bp is prime). Similarly
PAp C Q'BpNAp C Ap.



But by Proposition 2.2.5, PAp is the unique maximal ideal of Ap, hence
QBpNAp=Q BpNAp = PAp.
Hence, by Proposition 2.2.8 and Corollary 2.2.10, QBp = Q'Bp. Let ¢ : B — Bp be a ring

homomorphism that maps z € B to 7 € Bp. Then we have
Q=¢"(QBp)=¢"'(Q'Bp) = Q'
as desired. ]

Theorem 2.2.12 (“lying over”, 5.10\AM). Let A C B be rings, B integral over A (via
the inclusion mapping). Then for each P € Spec(A), there exists ) € Spec(B) such that
QNA=P.

Proof. Firstly, by Proposition 2.2.8, Bp is integral over Ap. Let ¢4 : A — Ap,¢p: B — Bp
be ring homomorphisms that maps a € A and b € B to { € Ap and % € Bp respectively.
Note that Bp is not the zero ring, let (' be a maximal ideal of Bp. Then by Corollary 2.2.10,
Q' N Ap is maximal and hence @' N Ap = PAp. By commutativity of the diagram (review
the picture), P = ¢, (PAp) = ¢, (Q' N Ap) = ¢5' (Q') N A. Let Q = ¢(B)~*(Q’), finishing
the proof. [

Theorem 2.2.13. Let A C B be rings, B integral over A (via the inclusion mapping). Then
dim A = dim B.

Proof.

o Let Qo € Q1 C -+ € @, be a chain of prime ideals of B. Then QyNA C Q1 NAC
<+ C @Q,NAis a chain of prime ideals of A. If Q; N A = Q,;1 N A for some ¢, then we
have Q); = Q);+1 by Proposition 2.2.11, contradicting to the construction of the chain.
Hence dim A > dim B.

e On the other hand, let Py € P, C --- € P, be a chain of prime ideals of A. By
Theorem 2.2.12 there exists )y € Spec(B) such that By = AN Qy. Let mq : A —
A/Py,mp : B — B/Q be canonical homomorphisms. By Proposition 2.2.8, B/Q,
is integral over A/Py via an injective homomorphism i* (see the diagram). By again
Theorem 2.2.12, there is Q; € Spec(B/Qo) such that (i*)(Q;) = ma(P;). At the same
time we have Qy C @Q; by letting Q; = m5'(Q1) € Spec(B). Suppose Qy = @, then
by the injectivity of *,

ma(Py) = ()(Q1) = (i*)(0) =0,

which is impossible. Hence Qg € (). Proceeding in a similar way we can construct a
chain Qy C Q1 € -+ € @, of prime ideals of B, showing that dim A < dim B.

]
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