
SI112: Advanced Geometry Spring 2018

Lecture 24 — May 15th, Tuesday
Prof. Manolis Scribe: Liangzu

1 Lecture 24

1.1 Overview of This Lecture

1.2 Proof of Things
Definition 1.2.1. The spectrum of a ring R, denoted by Spec(R), is the set of all prime
ideals in R. That is

Spec(R) = {I ⊂ R : I is prime ideal of A}.

Proposition 1.2.2 (contraction of an ideal). Let f : A → B be a ring homomorphism and
I ⊂ B an ideal. Then the inverse image f−1(I) is an ideal of A, called the contraction of I
to A.

Proof. Firstly, 0 ∈ f−1(I) since f(0) ∈ I. Let a, b ∈ f−1(I) ⇒ f(a), f(b) ∈ I and c ∈ A.
Then

f(a+ b) = f(a) + f(b) ∈ I ⇒ a+ b ∈ f−1(I)

and
f(ac) = f(a)f(c) ∈ I ⇒ ac ∈ f−1(I).

Proposition 1.2.3. Let f : A → B be a ring homomorphism and P ⊂ B a prime ideal.
Then f−1(P ) is a prime ideal of A.

Proof. Let a, b ∈ A be such that ab ∈ f−1(P ) ⇒ f(ab) = f(a)f(b) ∈ P . Then we have
either f(a) ∈ P ⇐⇒ a ∈ f−1(P ) or f(b) ∈ P ⇐⇒ b ∈ f−1(P ), which implies f−1(P ) is
prime.

Remark 1.2.4 (remark for Propsitions 1.2.2 and 1.2.3). If A ⊂ B and f : A → B is the
inclusion mapping. Then for a prime ideal P in B, f−1(P ) = P ∩ A is prime.

Proposition 1.2.5. Let f : A → B be a surjective ring homomorphism and Q ⊂ A a prime
ideal containing Ker(f). Then f(Q) is a prime ideal of B.
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Proof. It is easy to verify that f(Q) is an ideal. Let y1, y2 ∈ B be such that y1y2 ∈ f(Q).
Then since f is surjective, there exist x1, x2 ∈ A and x ∈ Q such that f(x1) = y1, f(x2) = y2

and f(x) = y1y2. Hence

f(x1x2 − x) = 0 ⇒ x1x2 − x ∈ Ker(f) ⇒ x1x2 − x ∈ Q ⇒ x1x2 ∈ Q.

This implies either x1 or x2 is in Q and thus either y1 = f(x1) or y2 = f(x2) is in f(Q).

Corollary 1.2.6. Let A be a ring and J an ideal of A. Then for each P ∈ Spec(A) such
that P ⊃ J , π(P ) is prime, where π : A → A/J is the canonical homomorphism.

Proposition 1.2.7. Let A be a ring and J an ideal of A. Then if P1, P2 are ideals of
A such that J ⊊ P1 ⊊ P2, π(J) ⊊ π(P1) ⊊ π(P2), where π : A → A/J is the canonical
homomorphism.

Proof. It is obvious that π(J) ⊊ π(P1) and π(P1) ⊂ π(P2). Suppose for the sake of con-
tradiction that π(P1) = π(P2). Let p2 ∈ P2\P1, then there is p1 ∈ P1, j ∈ J such that
p2 − p1 = j ⇐⇒ p2 = j + p1, which implies p2 ∈ P1 since j ∈ J ⊂ P1 and P1 is an ideal, a
contradiction.

Proposition 1.2.8. Let A be a ring and J an ideal of A. Then

Spec(A/J) = {π(P ) : P ∈ Spec(A) and J ⊂ P},

where π : A → A/J is the canonical projection that maps a ∈ A to a+ J ∈ A/J .

Proof. Let Q ∈ Spec(A/J) and let P = π−1(Q). Then by Proposition 1.2.3, P ∈ Spec(A).
We have π(P ) = π(π−1(Q)) = Q since π is surjective. [0] ∈ Q since Q is an ideal. Hence
π−1([0]) ⊂ π−1(Q) ⇒ J ⊂ P .

Remark 1.2.9. Let π : A → A/J be the canonical homomorphism. Then from the discus-
sions above, we can see that there is a one-to-one correspondence between the prime ideals
containing J in A and the prime ideals in A/J . Moreover, since if Q1 ⊊ Q2 are two ideals
in A/J , then π−1(Q1) ⊊ π−1(Q2), and Proposition 1.2.7, their “order” are preserved.

Definition 1.2.10. Let A be a ring and J an ideal of A. Then the dimension of A/J , called
Krull dimension is the supremum of the lengths of all chains Ql ⊋ Ql−1 ⊋ · · · ⊋ Q0 of prime
ideals Ql, Ql−1, . . . , Q0 ∈ Spec(A/J).

Remark 1.2.11. By Corollary 1.2.6 and Proposition 1.2.7, a chain Pl ⊋ Pl−1 ⊋ · · · ⊋ P0 = P

of prime ideals properly containing an ideal P gives rise to a chain π(Pl) ⊋ π(Pl−1) ⊋ · · · ⊋
π(P0) = π(P ) = {[0]}. Moreover, if A is an integral domain, then {[0]} is prime in A/P .
Hence these two chains are of the same length.
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Definition 1.2.12. Let Y ⊂ Cn be an irreducible closed set. We define dimY to be the
supremum among all lengths l of chains Yl ⊊ Yl−1 ⊊ · · · ⊊ Y1 ⊊ Y0 = Y of closed and
irreducible subsets Y1, . . . , Yl contained in Y .

Remark 1.2.13. Chains · · · ⊊ Yl · · · ⊊ Y1 ⊊ Y0 of infinite length can not exist because this
would imply infinite ascending chains of prime ideals that are not stable.

Remark 1.2.14. Note that if Yl ⊊ Yl−1 ⊊ · · · ⊊ Y1 ⊊ Y0 = Y , where Yi’s are irreducible and
closed and thus IYi

’s are prime ideals, then we have

Yl ⊊ Yl−1 ⊊ · · · ⊊ Y1 ⊊ Y0 = Y

⇐⇒ IYl
⊋ IYl−1

⊋ · · · ⊋ IY1 ⊋ IY0 = IY

⇐⇒ Z(IYl
) ⊊ Z(IY−1) ⊊ · · · ⊊ Z(IY1) ⊊ Z(IY0) = Z(IY )

⇐⇒ Yl ⊊ Yl−1 ⊊ · · · ⊊ Y1 ⊊ Y0 = Y

⇐⇒ Yl ⊊ Yl−1 ⊊ · · · ⊊ Y1 ⊊ Y0 = Y.

By Proposition 1.2.3, a chain whose ideals are in Spec(C[x1,x2,...,xn]
IY

) gives rise to a chain
with the same length whose ideals are in Spec(IY ), which implies dimY ≥ dim(C[x1,x2,...,xn]

IY
).

By Remark 1.2.11, on the other hand, a chain whose ideals are in Spec(IY ) gives rise to a
chain with the same length whose ideals are in Spec(C[x1,x2,...,xn]

IY
), which implies dimY ≤

dim(C[x1,x2,...,xn]
IY

).

Definition 1.2.15. Let Y be a closed set of Cn. We define dimY to be the maximum
dimension maxi=1,2,...,s Yi, where Y1, . . . , Ys are the unique irreducible components of Y .

Proposition 1.2.16. Let Y be a closed set in Cn and Y1, Y2, . . . , Ys the unique irreducible
components of Y . Then

dim(
C[x1, x2, . . . , xn]

IY
) = max

i=1,2,...,s
dim(

C[x1, x2, . . . , xn]

IYi

).

Proof. A chain of prime ideals containing IYi
can contain IY since IY ⊂ IYi

for i = 1, 2, . . . , s.
Hence

dim(
C[x1, x2, . . . , xn]

IY
) ≤ max

i=1,2,...,s
dim(

C[x1, x2, . . . , xn]

IYi

).

On the other hand, let P ∈ Spec(C[x1, x2, . . . , xn]) such that IY = IY1 ∩ IY2 ∩ · · · ∩ IYs ⊂ P .
Then we have IYj

⊂ P for some j, which implies

dim(
C[x1, x2, . . . , xn]

IY
) ≥ max

i=1,2,...,s
dim(

C[x1, x2, . . . , xn]

IYi

)

(we can replace IY by IYj
in a chain where every prime ideal contains IY ).
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Proposition 1.2.17. Let J be an ideal of C[x1, x2, . . . , xn]. Then
√
J = ∩P∈Spec(C[x1,x2,...,xn])

P⊃J

P.

Moreover, there are finitely many factors in this intersection.

Proof. Let Y1, Y2, . . . , Ys be the unique irreducible decomposition of Z(J). Then we have

Z(J) = Y1 ∪ Y2 ∪ · · · ∪ Ys

⇒
√
J = IZ(J) = IY1 ∩ IY2 ∩ · · · ∩ IYs .

Proposition 1.2.18. Let J be an ideal of C[x1, x2, . . . , xn]. Then

dim(
C[x1, x2, . . . , xn]

J
) = dim(

C[x1, x2, . . . , xn]√
J

).

Proof. dim(C[x1,x2,...,xn]
J

) ≥ dim(C[x1,x2,...,xn]√
J

) since J ⊂
√
J . On the other hand, let P ∈

Spec(C[x1, x2, . . . , xn]) such that P ⊃ J . It is enough to show that P ⊃
√
J . For r ∈

√
J ,

we have rk ∈ J ⊂ P ⇒ r ∈ P .

The aim is to achieve three goals in the next few lectures:

• prove that dimF[x1, x2, . . . , xn] = n,

• Noether Normalization, and

• Hilbert Functions.

Definition 1.2.19 (integral). Let B be a ring and A a subring of B. An element b ∈ B is
called integral over A if

bn + αn−1b
n−1 + · · ·+ α1b+ α0 = 0

for some α0, α1, . . . , αn−1 ∈ A.

Proposition 1.2.20 (AM\2.4). Let M be a finitely generated A-module, let I be an ideal of A,
and let f be an A-module endomorphism of M such that f(M) ⊂ IM = {α1w1+ · · ·+αnwn :

n ∈ N, αi ∈ I, wi ∈ M}. Then f satisfies an equation of the form

fn + α1f
n−1 + · · ·+ an = 0,

where αi’s are in I.

Proof. Please read the pictures or the book for the proof.
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Definition 1.2.21 (faithful module). Let A be a ring and M an A-module. Then M is
called faithful if there is no nonzero element α in A such that αM = 0.

Proposition 1.2.22 (5.1\AM). Let B be a ring, let A be a subring of B, and let b ∈ B.
Then the following are equivalent.

1. b is integral over A.

2. A[b] is a finitely generated A-module.

3. A[b] is contained in a ring C such that C is a finitely generated A-module.

4. there is a faithful A[b]-module M which is finitely generated over A.

Proof.

• 1 ⇒ 2). Since b is integral over A, we have

bn + αn−1b
n−1 + · · ·+ α1b+ α0 = 0 ⇐⇒ bn = −(αn−1b

n−1 + · · ·+ α1b+ α0)

for some α0, α1, . . . , αn−1 ∈ A, which implies A[b] is (finitely) generated by 1, b, . . . , bn−1.

• 2 ⇒ 3). Take C = A[b].

• 3 ⇒ 4). Take M = C, which is a A[b]-module since A = A[1] ⊂ A[b] ⊂ C. Then
M is faithful because if there is p(b) ∈ A[b] such that p(b)M = p(b) = C = 0, then
p(1) · 1 = 0.

• 4 ⇒ 1). Let f : M → M be an endomorphism of multiplying b, i.e., f(m) = bm for
each m ∈ M . Then f(M) = bM ⊂ AM . By Proposition 1.2.20, we have

(bn + αn−1b
n−1 + · · ·+ α1b+ α0)M = 0.

Since M is faithful, bn + αn−1b
n−1 + · · ·+ α1b+ α0 = 0. This implies b is integral over

A.
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SI112: Advanced Geometry Spring 2018

Lecture 26 — May 24th, Thursday
Prof. Manolis Scribe: Liangzu

2 Lecture 26

2.1 Overview of This Lecture
The goal of lecture 26 is to prove Theorem 2.2.13.

2.2 Proof of Things
Proposition 2.2.1. Let P be a prime ideal of a ring R, then S = R−P is a multiplicatively
closed set (i.e., s1s2 ∈ S for each s1, s2 ∈ S), and 0 /∈ S.

Proof. Left as an exercise.

Proposition 2.2.2. Let R be a ring and P,Q prime ideals of R. Let ϕ : R → RP be a ring
homomorphism that maps r ∈ R to r

1
∈ RP . If Q∩ (R\P ) ̸= ∅, then ϕ(Q)RP is not a prime

ideal.

Proof. Since Q ∩ (R\P ) ̸= ∅, let q ∈ Q ∩ (R\P ). Then q
1
∈ ϕ(Q), 1

q
∈ RP and thus

1
1
∈ ϕ(Q)RP , which implies that ϕ(Q)RP is not prime.

For the sake of simplicity, we will use QRP to denote ϕ(Q)RP in what follows.

Proposition 2.2.3. Let R be a ring and P,Q prime ideals of R with Q∩ (R\P ) = ∅. Then
Q is a prime ideal of R if and only if QRP is a prime ideal of RP .

Proof. Note that QRP is properly contained by RP since 1 /∈ QRP (1 /∈ Q and Q∩ (R\P ) =

∅), and that the set QRP is of the form

{q
t
: q ∈ Q and t ∈ R\P}.

Then

• ⇒). Let q1
t1
, q2
t2

∈ RP be such that q1q2
t1t2

∈ QRP , then we have q1q2 ∈ Q since t1t2 ∈ R\P ,
which means that either q1 ∈ Q or q2 ∈ Q. Hence we have either q1

t1
∈ QRP or

q2
t2

∈ QRP .
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• ⇐). Let q1, q2 ∈ R be such that q1q2 ∈ Q and let t1, t2 ∈ R\P . Then we have
q1
t1
, q2
t2

∈ RP and q1q2
t1t2

∈ QRP . This implies either q1
t1

∈ QRP or q2
t2

∈ QRP . Hence we
have either q1 ∈ Q or q2 ∈ Q. There is a much quicker way: ϕ−1(QRP ) = Q is prime
by Proposition 1.2.3.

Remark 2.2.4 (remark for Proposition 2.2.3). The occurrence of QRP is weird. It is because
ϕ(Q) is in general not an ideal, but ϕ(Q)RP always is.

Proposition 2.2.5. Let P be a prime ideal of a ring R and S = R − P , then the ring
RP = S−1R contains only one maximal ideal equal to PRP .

Proof. The elements p
s

with p ∈ P form an ideal m = PRP in RP . If b
t
/∈ m, then b /∈ P ,

hence b ∈ S and therefore, noticing t ∈ S, b
t

is a unit in RP ( b
t
· t
b
= 1). It follows that

if I is an ideal in RP and I ̸⊂ m, then I contains a unit, say b
t
, which implies I contains

1 = b
t
· t
b
= 1 and hence I = RP . Thus m is the only maximal ideal in RP .

Definition 2.2.6. Let ϕ : A → B be an injective ring homomorphism, an element b ∈ B is
called integral over A via ϕ if

bn + ϕ(αn−1)b
n−1 + · · ·+ ϕ(α1)b+ ϕ(α0) = 0

for some α0, α1, . . . , αn−1 ∈ A. Moreover, we say that B is integral over A if for each b ∈ B,
b is integral over A.

Corollary 2.2.7 (5.2\AM). Let b1, b2, . . . , bn ∈ B be such that they are integral over A.
Then the ring A[b1, b2, . . . , bn] is a finitely generated A-module.

Proof. The case n = 1 is part of Proposition 1.2.22. Suppose inductively it holds for the
case n − 1, i.e., the ring An−1 = A[b1, b2, . . . , bn−1] is a finitely generated A-module. Since
A ⊂ An−1 and bn is integral over A, bn is integral over An−1. Therefore A[b1, b2, . . . , bn] =

An−1[bn] is a finitely generated An−1-module by the case n = 1. Then we have

A[b1, b2, . . . , bn] = An−1 + An−1bn + An−1b
2
n + · · ·An−1b

m
n ,

where

An−1 = Ap1(b1, b2, . . . , bn−1) + p2(b1, b2, . . . , bn−1) + · · ·+ pk(b1, b2, . . . , bn−1)

for some

p1(b1, b2, . . . , bn−1), p2(b1, b2, . . . , bn−1), . . . , pk(b1, b2, . . . , bn−1) ∈ An−1,

which implies that A[b1, b2, . . . , bn] is finitely generated.
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Proposition 2.2.8 (5.6\AM). Let A ⊂ B be rings, B integral over A (via the inclusion
mapping).

1. If Q is an prime ideal of B and P = A ∩Q, then B/Q is integral over A/P .

2. If S is a multiplicatively closed subset of A, then S−1B is integral over S−1A.

Proof.

1. Let b ∈ B. Then there exists α0, . . . , αn−1 ∈ A such that

bn + αn−1b
n−1 + · · ·+ α1b+ α0 = 0.

Let πP : A → A/P, πQ : B → B/Q be the canonical homomorphisms, let i : A → B be
the inclusion mapping. Then by First Isomorphism Theorem, there exists an injective
ring homomorphism i∗ : A/P → B/Q such that πQi = i∗πP (have a look at the
diagram in the pictures). Then we have

πQ(b
n + αn−1b

n−1 + · · ·+ α1b+ α0) = 0

⇐⇒ [b]n + [αn−1][b]
n−1 + · · ·+ [α1][b] + [α0] = 0.

Noticing that [ai] ∈ i∗(A/P ) for i = 0, 1, . . . , n− 1 and i∗ is injective, B/Q is integral
over A/P via i∗.

2. First note that S−1A ⊂ S−1B. Let b ∈ B, s ∈ S (hence b
s
∈ S−1B). Then there exists

α0, . . . , αn−1 ∈ A such that

bn + αn−1b
n−1 + · · ·+ α1b+ α0 = 0.

Let ϕ : B → S−1B be a ring homomorphism that maps x ∈ B to x
1
∈ S−1B. Then we

have

ϕ(bn + αn−1b
n−1 + · · ·+ α1b+ α0) = 0

⇐⇒ bn

1
+

αn−1

1

bn−1

1
+ · · ·+ α1

1

b

1
+

α0

1
= 0

⇐⇒ (
b

s
)n +

αn−1

s
(
b

s
)n−1 + · · ·+ α1

sn−1
(
b

s
) +

α0

sn
= 0.

Noticing that ak
sn−k ∈ S−1A for k = 1, 2, . . . , n− 1, S−1B is integral over S−1A (via the

inclusion mapping).

Proposition 2.2.9 (5.7\AM). Let A ⊂ B be integral domains, B integral over A (via the
inclusion mapping). Then A is a field if and only if B is a field.
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Proof.

1. ⇒). Let y ∈ B and y ̸= 0. There exists α0, . . . , αn−1 ∈ A such that

yn + αn−1y
n−1 + · · ·+ α1y + α0 = 0.

Without loss of generality suppose that n is minimal. If α0 = 0, then y(yn−1 +

αn−1y
n−2 + · · · + α1) = 0, which implies yn−1 + αn−1y

n−2 + · · · + α1, contradicting to
the minimality of n. Hence α0 ̸= 0. Since A is a field, a−1

0 ∈ A ⊂ B. Then

y[−a−1
0 (yn−1 + αn−1y

n−2 + · · ·+ α1)] = 1.

Hence y−1 = −a−1
0 (yn−1 + αn−1y

n−2 + · · ·+ α1) ∈ B.

2. ⇐). Let x ∈ A ⊂ B and x ̸= 0. Then x−1 ∈ B. There exists β0, . . . , βn−1 ∈ A such
that

(x−1)m + βn−1(x
−1)m−1 + · · ·+ β1(x

−1) + β0 = 0.

Hence
x−1 = −(βm−1 + · · ·+ β1x

m−2 + β0x
m−1) ∈ A.

Corollary 2.2.10 (5.8\AM). Let A ⊂ B be rings, B integral over A (via the inclusion
mapping). If Q is an prime ideal of B and P = A ∩Q, then Q is a maximal if and only if
P is maximal.

Proof. Since P and Q are prime, A/P and B/Q are integral domains. By Proposition 2.2.8,
B/Q is integral over A/P . Then by Proposition 2.2.9, Q is maximal if and only if B/Q is a
field if and only if A/P is a field if and only if P is maximal.

Proposition 2.2.11 (5.9\AM). Let A ⊂ B be rings, B integral over A (via the inclusion
mapping). If Q,Q′ ∈ Spec(B) such that Q′ ⊂ Q and Q′ ∩A = Q ∩A = P ∈ Spec(A). Then
Q′ = Q.

Proof. Note that by Proposition 2.2.3, QBP , Q
′BP ∈ Spec(BP ), and that P ⊂ Q, PAP ⊂ AP

and AP ⊂ BP , we have
PAP ⊂ QBP ∩ AP ⊊ AP

(if QBP ∩ AP = AP ⇐⇒ AP ⊂ QBP , then 1 ∈ QBP ⇐⇒ QBP = BP , contradicting that
QBP is prime). Similarly

PAP ⊂ Q′BP ∩ AP ⊊ AP .
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But by Proposition 2.2.5, PAP is the unique maximal ideal of AP , hence

QBP ∩ AP = Q′BP ∩ AP = PAP .

Hence, by Proposition 2.2.8 and Corollary 2.2.10, QBP = Q′BP . Let ϕ : B → BP be a ring
homomorphism that maps x ∈ B to x

1
∈ BP . Then we have

Q = ϕ−1(QBP ) = ϕ−1(Q′BP ) = Q′,

as desired.

Theorem 2.2.12 (“lying over”, 5.10\AM). Let A ⊂ B be rings, B integral over A (via
the inclusion mapping). Then for each P ∈ Spec(A), there exists Q ∈ Spec(B) such that
Q ∩ A = P .

Proof. Firstly, by Proposition 2.2.8, BP is integral over AP . Let ϕA : A → AP , ϕB : B → BP

be ring homomorphisms that maps a ∈ A and b ∈ B to a
1
∈ AP and b

1
∈ BP respectively.

Note that BP is not the zero ring, let Q′ be a maximal ideal of BP . Then by Corollary 2.2.10,
Q′ ∩ AP is maximal and hence Q′ ∩ AP = PAP . By commutativity of the diagram (review
the picture), P = ϕ−1

A (PAP ) = ϕ−1
A (Q′ ∩AP ) = ϕ−1

B (Q′) ∩A. Let Q = ϕ(B)−1(Q′), finishing
the proof.

Theorem 2.2.13. Let A ⊂ B be rings, B integral over A (via the inclusion mapping). Then
dimA = dimB.

Proof.

• Let Q0 ⊊ Q1 ⊊ · · · ⊊ Qn be a chain of prime ideals of B. Then Q0 ∩ A ⊂ Q1 ∩ A ⊂
· · · ⊂ Qn ∩A is a chain of prime ideals of A. If Qi ∩A = Qi+1 ∩A for some i, then we
have Qi = Qi+1 by Proposition 2.2.11, contradicting to the construction of the chain.
Hence dimA ≥ dimB.

• On the other hand, let P0 ⊊ P1 ⊊ · · · ⊊ Pm be a chain of prime ideals of A. By
Theorem 2.2.12 there exists Q0 ∈ Spec(B) such that P0 = A ∩ Q0. Let πA : A →
A/P0, πB : B → B/Q0 be canonical homomorphisms. By Proposition 2.2.8, B/Q0

is integral over A/P0 via an injective homomorphism i∗ (see the diagram). By again
Theorem 2.2.12, there is Q1 ∈ Spec(B/Q0) such that (i∗)(Q1) = πA(P1). At the same
time we have Q0 ⊂ Q1 by letting Q1 = π−1

B (Q1) ∈ Spec(B). Suppose Q0 = Q1, then
by the injectivity of i∗,

πA(P1) = (i∗)(Q1) = (i∗)(0) = 0,

which is impossible. Hence Q0 ⊊ Q1. Proceeding in a similar way we can construct a
chain Q0 ⊊ Q1 ⊊ · · · ⊊ Qm of prime ideals of B, showing that dimA ≤ dimB.
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